QFT: Lay of the land
Lagrangian Formalism
todo
Spin 0
Lagrangian Density
\begin{align}
\mathcal{L} &= -\frac{1}{2} \sum_{μ, ν} η^{μν} \frac{\partial φ}{x^μ}
\frac{\partial φ}{x^ν} - \frac{1}{2} κ^2 φ^2 \\
&= \frac{1}{2} \left[ \Box φ - κ^2 φ^2 \right]
\end{align}
Klien-Gordon Equation
The equations of motion for a spin 0 particle is given by
\begin{equation} \Box φ = κ^2 φ \end{equation}- E.g.: Higgs Boson
Spin 1/2:
Dirac Lagrangian Density
\begin{equation}
\mathcal{L} = i \sum_{μ} \bar{Ψ}\, γ^{μ} \frac{\partial}{\partial X^μ} Ψ
- m\bar{Ψ}\, Ψ
\end{equation}
Dirac Equation
The equations of motion for a spin 1/2 particle is given by:
\begin{equation} i \sum_{μ} γ^{μ} \frac{\partial}{\partial X^μ} Ψ = m Ψ \end{equation}- E.g.: Electron
Spin 1
Maxwell Lagrangian Density
\begin{equation}
\mathcal{L} = - \frac{1}{4} \sum_{μ, ν} F^{μν} F_{μν}
\end{equation}
Maxwell’s Equations
The equations of motion for a spin 1 particle is given by:
\begin{equation} \sum_{μ, ν} F^{μν} = 0 \end{equation}- E.g.: Photon
Spin 2
Einstein-Hilbert Lagrangian Density
\begin{equation}
\mathcal{L} = \frac{1}{16 π G} g^{μν} R_{μν}
\end{equation}
Einstein’s Equations
The equations of motion for a spin 2 particle is given by:
\begin{equation} R_{μν} = 0 \end{equation}- E.g.: Graviton(?)